
Three AntiPractices while teaching Agile Methods∗

Alexandre Freire, Fabio Kon, Alfredo Goldman

1Departamento de Ciência da Computação
Instituto de Mateḿatica e Estatı́stica

Universidade de S̃ao Paulo

ale@ime.usp.br, kon@ime.usp.br, gold@ime.usp.br

Abstract. This article gives educators and consultants some insight into three
very simple and common problems, when one tries to introduce XP to a develop-
ment team or teach it in a University: the “Bootstrap”, “Split Personality” and
“Abandon Complex” antipractices. Bootstrap describes how teams learning XP
have difficulties when starting a project with little or no code base. Split Person-
ality describes the difficult task one has to endure when assuming both the Coach
and Customer roles in an XP team. Abandon Complex describes problems that
arise when a coach has to leave his/her team. We present these organizational
antipatterns as antipractices we have identified while (1) teaching XP in the con-
text of an XP laboratory course in the University of São Paulo, (2) an experience
helping a start-up transition to XP and (3) another transition in a governmental
project. We discuss various simple solutions to the antipatterns based on reflec-
tions from these experiences and describe concrete situations where they were
effective.

Resumo.Este artigo apresenta um pouco de reflexão para educadores e con-
sultores sobre tr̂es problemas simples e comuns quando tenta-se introduzir XP
a uma equipe de desenvolvimento ou ensiná-la em uma Universidade: as anti-
práticas “Bootstrap”, “Split Personality” e “Abandon Complex”. Bootstrap
descreve dificuldades sofridas por equipes que estão aprendendo XP quando
começam um projeto com uma base de código pequena ou inexistente. Split
Personality descreve a tarefáardua que uma pessoa deve executar ao assumir
ambos os paṕeis de Treinador e Cliente em uma equipe que segue ao método
de XP. Abandon Complex descreve o problema que surge quando um Treinador
precisa abandonar sua equipe. Apresentaremos estes anti-padrões organiza-
cionais como anti-pŕaticas que identificamos (1) ensinando XP no contexto do
curso “Laborat́orio de Programaç̃ao eXtrema” na Universidade de São Paulo,
(2) em uma experiência ajudando uma empresastart-upmigrar para XP e (3)
outra transiç̃ao em um projeto governamental. Iremos discutir várias soluç̃oes
simples para estes anti-padrões baseadas em reflexões sobre nossa experiência
e descrever situaç̃oes concretas onde as soluções foram efetivas.

1. Introduction

While teaching XP [Beck and Andres 2004] many problems arise that have to be dealt
with, mostly due to different contexts and heterogeneous teams that have to learn prac-

∗Relat́orio Técnico RT-MAC-2007-03



tices and adapt them to their reality. We have had extensive teaching experience in aca-
demic and business contexts, trying different solutions to common problems by adapting
practices and refactoring XP rules to fit local realities.

From these experiences, we identified three very common, simple and recurrent
antipatterns. The first one deals with the time a team takes to start being productive and
picking up project velocity using all of XP’s practices. We show that having little or no
code base to build upon can be the source of difficulties and propose concrete solutions
so a team can start to work in parallel as soon as possible. The second one concerns
the difficulties some teams have to deal with when the same person plays the Coach and
Customer roles in an XP project. The third one deals with difficulties a team might go
trough when the time comes for the Coach to leave the project.

Just as many agile practices (e.g., “Stand Up Meetings” or “Developing In Pairs”)
have been cataloged as organizational patterns by [Coplien and Harrison 2004],
many organizational and process antipatterns have been observed as well
[Brown and Thomas 2000]. Antipatterns are apparent solutions commonly ap-
plied to solving a problem, but that in fact create a bigger problem. Antipatterns
propose a refactored solution to the problem. Having observed these apparent solu-
tions in our projects and in other research papers relating experiences teaching XP
[Mugridge et al. 2003, Meszaros 2004, Jackson 2004, Tomek 2002], we will define
them as antipatterns and present refactored solutions that might be of use to the agile
community.

We will use “AntiPractices” as a metaphor to present these organizational antipat-
terns, as proposed by [Kuranuki and Hiranabe 2004], having slightly refactored the pat-
tern template used there, to allow a simple and quick exposition of this pattern language.

In the next section we will describe the context of projects where we tried different
approaches to solve each antipractice. We will then introduce the antipractices in turn,
presenting different contexts and countermeasures in a narrative story format, and later
generalizing them in a pattern-like format, proposing possible solutions for each. Finally
we will conclude recommending the use of some of the proposed solutions in specific
contexts where they have been proven useful.

2. Projects and contexts - The XP Lab, Paggo and ALESP
The XP laboratory course at IME/USP has had success teaching Computer Sci-
ence students how to eXtreme Program while developing real world projects
[Goldman et al. 2004, Freire et al. 2004, Freire et al. 2005a]. We will look into two of
the projects realized during the 4th edition of the lab.

The first project, “Colḿeia”, built upon a Java-based Web application for manag-
ing a University library with up to hundreds of thousands books and thousands of users.
Development for this project began in the previous edition of the laboratory , it had a
big code base, with many automated tests. The team had six student members, a senior
student that had taken the laboratory course in the previous year acted as coach. The cus-
tomer was the manager of the Institute of Mathematics library and was present for weekly
short meetings and monthly Planning Games. The system today counts with 31252 lines
of executable code, while during this edition of the lab students wrote (or changed) 8607
lines of code implementing 12 user stories



The second project, “Cigarra” [Freire et al. 2005a], was built in a partnership with
the Ministry of Culture in Brazil [Brazilian Ministry of Culture 2003], the requested sys-
tem solves the need of Cultural Hotspots to distribute multimedia artifacts. The team was
composed of twelve members: eleven students and a teaching assistant for the course,
who also worked as a Ministry of Culture consultant responsible for the technological
aspects of the Cultural Hotspots project; thus, he played both the Coach and Customer
roles in the team. Since we had no code to start with, we chose to use a few existing free
and open source tools and frameworks to develop the system. The system had 2995 lines
of executable code in 27 classes implementing 17 user stories.

Having acted as industry consultants as well, we experimented implementing
XP at Paggo [Paggo 2003], a start-up venture in the credit card business in Brazil
[Freire et al. 2005b]. The first author worked there as a consultant coaching a 6 person
team in XP practices, frameworks, and OO concepts. The main objective was to have
an XP proficient team ready to be independent from the coach within 6 months. One of
the company’s founders played an in-house customer and was present daily. During the
consultancy we managed to go through 12 releases, using mostly two week iterations.
We produced four applications, successfully implementing 269 stories out of an original
340, of which 42 were later discarded or deemed unnecessary by the customer. From a
technical point of view, we delivered 90% of wanted functionality, fully tested and free of
bugs

We also helped a team working in a governmental legislative body (the House of
Representatives of the São Paulo State - ALESP), transition successfully to XP, acting as
consultants in this project where the team was composed of 8 people with no previous
experience in XP plus one of the students that had participated in our XP lab. Their
challenge was to start the development of a new system for managing human resources
in the House. During the first 8 iterations of this project we spent some time training the
team on the technologies and on XP, after that we decreased our level of participation in
the project. The system during this time had 48517 lines of executable code delivering
106 stories.

3. Bootstrap - “We want to do XP, but can’t get all practices going, we are
waiting for code that doesn’t exist yet”

The Bootstrap antipractice describes how teams learning XP have difficulties when start-
ing an XP project with little or no code base, which is common when teaching XP. In
our experience, developers in large XP teams tend to have a hard time to start integrat-
ing a system or even test-first when there is no code to build upon. It is hard for pairs
to move people around because the pair that started coding a component is reluctant to
let other pairs work on it, fearing what a new person might think of their tests or their
work, or even because they want to be the ones to continue developing upon the code
they started to build. Task coordination is complicated, especially for the bootstrap story
(the first story a team implements) [Andrea 2001], getting the team to work in parallel
is complicated since many stories depend on other stories that are not yet developed or
completed.

Techniques have been proposed to help scale the bootstrap and other stories
[Meszaros 2004]. However, we found that when a project begins, and little or no code



exists, programmers that have no experience with XP have many difficulties to start being
productive, and the team takes a while to establish a good project velocity and adopt all
practices fully.

We note that this problem is simple to solve in some cases, specifically if the
team is mature and has had previous experience with agile methods. Among the possible
solutions one can find, (1) breaking up the bootstrap stories using storyotypes1, (a pat-
tern language that defines different types of stories, some which are easier to bootstrap
[Meszaros 2004]) or by creating specific tasks to focus on setting up development infras-
tructure or researching new technologies, (2) building upon an existing free and open
source code base, (3) developing bootstrap code with a pair or smaller team using TDD.
When the team is learning XP, and especially if they are also learning how to test and
refactor, we propose that some of the rules of XP be relaxed, such as allowing integration
of untested code for a short period of time, just to bootstrap the code base, so that every-
one can then work in parallel. We know this goes against XP values, but in exceptional
cases, like the ones we’ll observe, we think that this relaxation can be beneficial.

3.1. Cigarra

The Coach was having trouble with the team developing “Cigarra”, he was under pressure
from his team and the course professor: they were the only team in the XP lab that had
to push back the deadline for their first release so that they could show the Customer a
minimally acceptable system.

The coach observed that two developers waited around for others to work so that
they “had something to do”. The story they had accepted during the planning game was
dependent on another pair finishing a story before they could proceed.

Two other developers were reluctant to integrate their code; they had finished their
story, but were not convinced they had enough tests. As they had little testing experience
they were afraid of committing their code until they were sure they had good tests and all
of them passed.

3.1.1. Action

The coach saw that action had to be taken so the team would remain motivated; they
had to deliver their first release soon. Talking with the developers, he decided to split
stories into development and testing tasks, and to refactor the bootstrap story written by
consultants for the Ministry into smaller stories using storyotypes. We found that many
stories, of thevariation or new business rulestoryotypes, depended on other stories, of
the new functionalityor infrastructurestoryotypes, being completed, we prioritized the
second set, so that code would exist to be worked on.

The coach also created research tasks related to free and open source software
and frameworks that were going to be used in the project. These tasks were aimed at
testing functionality we planned on using, or even code we wanted to refactor into our
application. Some of the developers mention that they did not see the point in writing

1Storyotypes define four different types of concrete stories, which (1) help set up the infrastructure, (2)
create new functionality in the system, (3) alter existing functionality, and (4) create new business rules.



tests for 3rd party code, but after some negotiation agreed that it was better to do that than
just waiting around for dependencies to clear up with no work to do.

A temporary rule was agreed upon, that after each lecture period, everyone would
commit their code, even it was not fully tested. We made it clear that this was an excep-
tional agreement, valid for just enough time to get a code base with which everyone could
work in parallel. After that, continuous integration would depend on passing tests.

3.1.2. After effect

The decisions seemed to work. No one would just wait for others to finish stories to work
on dependencies. The team was glad that new test tasks where created. The developers
that were afraid of committing their code with few tests, now felt comfortable with that,
and finally integrated their code into the repository, allowing other developers to start
working. They also had an opportunity to try test-first programming, committing their
tests before any code was created. It helped to have the coach review the code and reassure
that their tests were good, and to have the rest of the team to help develop the code to pass
tests, not necessarily working with the same pairs that created the tests. They were proud
to learn how to test effectively.

Confidence on code quality rose and the team managed to deliver their first release.
As a side-effect from testing the free and open source frameworks and software, the team
was confident on the choices and grew knowledgeable on their use. Team members also
saw a great opportunity to give back to the open source community, submitting patches to
projects with the test-suites we created.

3.2. ALESP

The team working in the ALESP (São Paulo House of Representatives) project had more
programming experience, they were new to XP but were eager to show they could code.
The Coach was worried about the bootstrap antipractice, feeling that, since they were
working with a large (8 person) team, if people were not able to start working in parallel
right away they would loose motivation in embracing XP.

3.2.1. Action

The Coach decided to start the transition by holding an agile design session with the team.
During this meeting, with plenty of white board space, everyone agreed upon the basic
overall architecture and a common view of the business model. We knew that, since we
were adopting an agile method, the architecture would change in the subsequent months,
but the team felt much more comfortable having some concrete models to talk about.
Then, we had one of the consulters, a student that had attended the Xp Laboratory, pair
with another developer and, working throughout the night, code all of the classes related
to the business model using TDD, so the team would have something to work on in the
following day.



3.2.2. After effect

When the team came in the next day, many classes were already in the repository, and
the team was able to start working in parallel in stories related to new business rule and
variation storyotypes.

3.3. Paggo

At Paggo, the customer had a small project he would like to use as a test for introducing
XP. One of the developers did not want to pair program, and wanted to code all his stories,
only integrating the code when he finished everything. Two other team members had
never written tests and delayed committing their stories, holding back others. The coach
was also worried about the quality of the code being produced and resistance from some
team members to embrace change. Again, we saw that some team members were too
comfortable in the position of waiting for others to finish their work so they could start
working.

Developers were frustrated that progress was slow and were conscious that not all
practices were being followed throughly; “we want to do full XP, but we are slow because
we don’t have enough code, we have to wait for others to finish their stories so that we
can proceed; because we are new to XP, some are reluctant to integrate their code, and we
can’t start working in parallel”.

3.3.1. Action

The coach reached an agreement with the customer: they decided that the first application
would be treated as a prototype, its main objective would be to teach XP practices and
would probably be discarded after it was finished. We explained this to the team and
got them to focus on improving their practices. We wrote many tests and team members
were glad to have a chance to explore possibilities. They knew that even tough some tests
did not seem good enough, this would not be a problem because the application was not
critical. The programmer that did not want to do pair programming was convinced to try
it as an experiment, and a commit rule was created. All code would be committed twice
a day, once before lunch and once before leaving the office, even if everything was not
tested; again, this rule had an expiration date, after which code could only be integrated
if all tests passed.

3.3.2. After effect

Developers managed to incorporate all XP practices after the first prototype project. They
evolved their testing and continuous integration skills. Some were conscious that many
tests written during the prototype project were not necessary and code quality was not
very high, but the customer was comfortable with this. When the project was completed,
we found that it was good enough to pass the customer’s acceptance tests, and it was even
put into production.



3.4. Crystalize

We named this AntiPractice “Bootstrap” and have suggestions for avoiding trouble in the
future. Causes for the problem are directly related to the size of the team, available code
base upon starting the project and developers lack of fluency in XP. When starting a new
project we now try these three alternative approaches: (1) splitting large stories via story-
otypes and allowing a pair or a small subset of the team to write the base business model
classes overnight with TDD, so that everyone can start working in parallel innew busi-
ness ruleor variationstoryotypes, (2) building upon an existing free and open source code
base to allow the team to strengthen other techniques, such as testing, and (3) allowing a
short period of time, where the team can integrate code that is not completely tested. The
third option is a solution to pick up speed bootstrapping the project code base, we feel
that this no longer breaks XP rules, as long as testing is done early enough.

We have had success with allowing a pair to work overnight using test-driven
development, bootstrapping the code base for the rest of the team, however, this is not
very consistent with XP values, and should be considered carefully. It might be best to
allow a smaller subset of the team (from 2 to 4 developers) to work on a design session and
a metaphor with all of the team, and then code the base business model classes quickly.

Using storyotypes to split large stories in the first iteration, creating tasks for set-
ting up continuous integration, development environments, writing build scripts, and re-
searching technologies (especially if looking for free and open source projects to build
upon) so as to occupy all of the team even if it is not yet possible for everyone to write
code, are good countermeasures for this antipractice of starting XP learning projects with
no code base. See Table 1 for a summary.

4. Split Personality - “Who am I? Coach or Customer?”
Studies point out that one of the challenges of teaching XP is practicing on-site cus-
tomer correctly [Mugridge et al. 2003, Tomek 2002]. The Split Personality antipractice
describes the difficult task one has to endure when assuming both the Coach and Cus-
tomer roles in an XP project, this antipractice should not be observed invanilla XP envi-
ronments, however it is very common solution applied in academic contexts. Having the
same person act as Customer and Coach may lead to schizophrenic results, it confuses
the team and makes it hard to distinguish business and development forces in day-to-day
activities and especially in the planning game.

It is hard for developers to establish when one is guiding the team, and making
sure everyone follows the rules of the game, as a Coach; or when he/she is trying to
request stories, validate them, or give clear feedback about the requirements, acting as a
Customer. It is also difficult for this person to avoid introducing a Customer’s concerns
into her/his coaching duties, and vice versa.

It has been reported that both the Customer role [Martin and Noble 2004] and
the Coach role [Hedin et al. 2003] are complex, challenging, and time consuming, they
should not overload a single person.

When trying to address this issue we will discuss different solutions such as using
someone from the team as a Customer Proxy2, or, when it’s not possible to get another

2A person responsible for interacting with the customer regularly and representing his/her needs for the



Table 1. Bootstrap

Name Bootstrap (We want to do XP, but can’t get all practices go-
ing, we are waiting for code that doesn’t exist yet!)

Background The project is starting, the bootstrap story is large, there is
little or no code to build upon, the team does not have much
experience in XP.

Symptom Some members are not productive because they are waiting
for other stories upon which their story depends. Others
delay committing their code fearing it is not good enough
or tests are not comprehensive.

Cause Team has little experience with XP. There is not enough
code to coordinate stories in parallel. Continuous Integra-
tion is not working effectively.

Ideal Having a good code base to build upon so that no one is
waiting for dependencies and pairs can work in parallel. Ev-
eryone commits working and tested code frequently.

Refactored Solution Allow the team to commit code with no tests for a short
period of time. Build upon existing free and open source
code. Use storyotypes to divide large stories, create stories
aimed at strengthening weak practices, and tasks aimed at
setting up a development environment. Allow a small subset
of the team to create a code base with the business model
classes overnight, so the next morning the rest of the team
can start working focusing on stories that follow the new
business rule and variation storyotypes.



person, something as simple as clearly distinguishing when one is acting as Coach or
Customer by using a hat.

Straight forward solutions are proposed for controlled contexts. In the XP lab, the
ideal practice is to simply have coaches for the whole period, using graduate students or
senior students [Goldman et al. 2004] and a real Customer that can at least participate in
weekly meetings.

4.1. Story

The coach for the Cigarra project, was having trouble addressing the Customer role with-
out taking into account his Coaching desires. It was not clear to developers when he
expressed Customer’s concerns, or when he was giving advice as a Coach. Even for him-
self it was not clear when he decided something because he knew the Customer wanted it,
or because he saw that it would be best to Coach the team. Difficulties were augmented by
the fact that the team was large (twelve people), and that it was difficult to communicate
clearly to everyone what the Customer intended and what the Coach wanted.

During the planning game of the exploratory phase, the team tried to convince
the Coach that it was best to code spikes to try out different peer-to-peer technologies
such as BitTorrent, JXTA, or CORBA. The team wanted to test all of these interesting
technologies and the Coach thought it might be a good opportunity to allow the team to
explore possibilities. However, he was confused: was he representing his customer or
giving a coach’s advice? Could he do both at the same time? In retrospective, this choice
wasted precious time, added difficulty to bootstrap the project, and made the team change
the date for their first release with consent from the customer (who was not very happy).
He now believes that he, as a Coach, should have backed himself as a Customer (knowing
that BitTorrent was by far the best choice and not wanting to waste precious time with an
exploration that would lead to a foreseeable result) instead of going along with the team.

4.2. Action

The Coach decided to try different approaches with his team. He invited other Ministry
consultants to come act as proxy customers during Planing Games and to run acceptance
tests when a release was delivered. He also started bringing a hat and some gadgets to the
lab. He would put on the hat when he wanted to act as a customer, making it clear to the
team when he was addressing business rules from the client’s perspective, or what part he
was playing during a Planing Game. He even managed to stage conversations between
the Coach and the Customer, addressing his multiple personalities with gadgets, to both
organize things in his mind and communicate more clearly with the team. Figure 1 shows
the use of a hat by a split personality coach-customer.

4.3. After effect

Using proxy customers other than himself and a hat when he had no other choice, really
made the difference for the Coach. He found that at important moments, such as accep-
tance testing of a release, it was very valuable to have a proxy customer, so that he could
be completely concentrated on his coaching activities and the team would feel that they
were facing someone that would really benefit from the system they were developing.

team.



Figure 1. Split Personality

When a proxy could not be present, he found it really useful to use a hat and other
gadgets acting both as coach and customer. He could understand what he had to do better,
and it was easier to keep the coach locked away in his mind when he had the customer hat
on. It was also fun for the team, and added a healthy schizophrenic dynamic to planing
games and stand up meetings.

4.4. Crystalize

We called this antipractice “Split Personality”. Having to act both as Customer and Coach
is stressful and can be quite confusing to developers and the person in question. This
problem is not that hard to solve if one has courage and discipline, or if the team is small.
When possible, using proxy, or real customers, can be of great help and alleviates load.

When all else fails and the person coaching has to act as Customer, using a hat and
gadgets to clearly distinguish the Coach from the Customer can be a good humored way
to carry this burden, and it was very useful for us, helping the person clear his/her mind
into acting the appropriate way. These are proven solutions to the common antipractice
of having the same person act as Coach and Customer. See table 2 for a summary.

5. Abandon Complex - “The Coach left us! Who is the Coach?”

In the natural course of a Coach’s job there comes a time when the team is comfort-
able with XP and he/she can leave them to follow their own path. When this happens,
it is advisable not to overload someone (possibly an experienced developer) with coach-
ing duties as well. Even in a controlled context, such as the XP lab, students can drop
out of courses, trouble can come up if the Coach has to leave the team. More often
than not, the most experienced developer does not make the best choice for coach. We
propose a refactored solution to this antipractice, having one or more Champions of the



Table 2. Split Personality

Name Split Personality (Am I the coach, or the customer?)
Background One person is overloaded with too much responsibility, pos-

sibly playing both Customer and Coach.
Symptom The team is confused, they can’t make sure when they are

talking to the Customer or to the Coach. The person tack-
ling more than one role is overwhelmed and stressed, not
knowing how to separate his/her responsibilities clearly.

Cause Being a Customer is a complex task with many challenges,
so is being a Coach. Having to do both things can drive
anyone insane.

Ideal Having a real customer and a real coach.
Refactored Solution Use proxy customers when possible. When all else fails,

clearly identify if you are the Customer or Coach, using a
hat and other gadgets.

Court3 [Jackson 2004] act as coach, and rotating Champions using the Coach Of The
Week practice [Freire et al. 2005b], or even something as simple as the new coach Ac-
cepting Responsibility. Other roles in XP teams have been discussed in the literature by
[Dubinsky and Hazzan 2006].

5.1. Colméia

In the library team, the senior student that was coaching the team, dropped out of the
lab to pursue a trainee opportunity. The team was concerned, for they understood the
importance of the coach in keeping everyone aware of the XP rules and in conducting
Planning Games with the Customer. Some of the developers, though, were enthusiastic
about XP and did not want their team to fall behind.

5.1.1. Action

Developers decided that someone would be elected as a Champion of the
Court [Jackson 2004]. One of the developers, was eager to act as Coach; he was elected
by his peers to conduct discussions and make decisions when they had to be made. He
was comfortable with the position and made it clear that input from others was desirable.

5.1.2. After Effect

The new Coach did great. Since by then most developers were comfortable with XP
practices, he could count with their help most of the time. Discussions were democratic,
but when decisions had to be made, the team was relieved the Coach clearly had the role to
make the consensual solution come out. He also made sure to spread knowledge, with the
help of experienced members, getting them to pair with weaker developers and helping
ensure everyone followed XP practices.

3Persons who have experience with agile methods and drive the XP process from within the team.



5.2. ALESP

After a 8 iterations coaching the ALESP team, we decided that it was time for them to
be on their own. The team elected a Champion of the Court, the result was that the most
senior developer would assume Coaching duties, he was a bit reluctant but agreed to give
it a try.

The next week did not go well, the Coach was depressed and did not manage to
give clear guidance to the team. He would not decide on anything, and would simply go
along with suggestions from the team, even if they were contradictory.

5.2.1. Action

After a week without any productivity, the team called us to solve the problem. The Coach
admitted that he was not doing a good job. We then tried to see if anyone on the team
really wanted the responsibility. One of the developers did, and he was placed as the new
Coach.

5.2.2. After Effect

The new coach, although not as experienced technically, tried to do a good job, commu-
nicating with the team and making decisions when he had to.

5.3. Paggo

At Paggo, near the sixth month using XP, the consultant acting as Coach and the Customer
decided it would be best that the first no longer remain on the team. Some of the devel-
opers, and the Customer himself, had embraced change, enforcing values and practices
when the Coach could not be around. However they did not know who could take on the
coach’s responsibilities, how to proceed without overloading anyone?

5.3.1. Action

The customer was worried about what would happen to the team after the coach left.
Who would become the coach? When approaching the end of our period working there,
we suggested a new practice, Coach of the Week [Freire et al. 2005b], where a different
champion of the court would be elected each week to act as Coach.

5.3.2. After Effect

The first elected Coach of the Week performed his coaching duties very well, conducting
stand up meetings and making sure everyone followed the practices. In the second week, a
new developer assumed as champion, to much relief from the previous Coach, who could
get a break from being overloaded by his developer activities and coaching duties. After a
few weeks, everyone had been Coach at least once, and the customer was convinced that
this practice would be beneficial in always having someone acting as Coach but, at the
same time, not stressing any single person by rotating the responsibility weekly.



This practice also ensured the customer that if anyone on his team left, he/she
could quickly hire a new developer and get him to work with XP, and even come to share
coaching duties. It has been observed [Jackson 2004] that having only one Champion of
the Court is not as effective as when everyone in the team becomes a Champion. The
Coach of the Week practice enforces this, as everyone has a chance to realize that XP
is a methodology that requires discipline and can help to drive the process, by taking
upon themselves the responsibility of making sure the team is following the rules of the
game. By conducting stand up meetings and planning games this person realizes that the
customer’s needs should be negotiated with the team, and that it is important to have a
very clear idea of what she/he wants. By helping the tracker to display metrics, the coach
comes in greater contact with the team reality, and when he/she changes with the next
Coach of the Week she/he has a clear understanding of his/her part in getting the whole
team to function well. This helps ensuring that everyone is working as they should even
without being the official coach that week.

5.4. Crystallize

Having a Champion of the Court assume coaching duties can help, especially if adopting
the Coach of the Week practice, permitting the whole team to get involved in driving the
XP process, and making sure no one is overloaded.

However, we would not advise that everyone on the team act as coach if the team
has weaker developers, or ones not as familiar with agile methodologies, in this case, it
might be better to rotate the coach role only between more eXPerienced developers. Also,
it is important that the Champion really accept responsibility for her/his new coaching
duties. See table 3 for a summary.

Table 3. Abandon Complex

Name Abandon Complex (The coach left us! Who is the Coach?)
Background The Coach has to leave the team, someone has to take

his/her role.
Symptom The team is lost. The person chosen to be coach is over-

whelmed and stressed.
Cause Being a Coach is a complex task with many challenges.

The most experienced developer technically might not be
the best choice for the new Coach.

Ideal The coach does not have to leave.
Refactored Solution Have a Champion of the Court accept to take the coach’s

responsibilities, rotate the champion by practicing Coach of
the Week.

6. Summary and Conclusions

We have identified three organizational antipatterns that are common and recurrent both
in industrial and academic environments based on our eXPeriences in these contexts. We
have presented “Bootstrap”, “Split Personality” and “Abandon Complex” in the form of
a small antipattern language and discussed different solutions to these antipatterns based
upon reflections from our experience.



Bootstrap addresses the issue of a team that starts to learn XP in a project with
little or no code base. The team is new to XP and needs to be quickly productive. When
starting a project from scratch, we have shown that allowing a small subset of the team
to bootstrap the code base with the business model classes and then focusing onnew
business rulesor variation storyotypes, is a simple solution to bootstrap. Using free
and open source software as a initial code base is also a solution that can help teams
strengthen other practices and techniques, such as testing. When the team is learning XP
and other techniques, using storyotypes to split up the bootstrap story, and allowing code
to be committed without complete test coverage, only during a short period of time, is a
solution to bootstrap.

Split Personality addresses the issue of a person on the team being overloaded
with the roles of Coach and Customer. When there is the possibility, one should use
one or more Customer Proxies or a real Customer. When everything else fails, rely on
the simple solution of using a hat or gadgets to distinguish clearly when one is acting as
Coach or as Customer.

Abandon Complex describes troubles a team might face when the Coach has to
leave. Instead of electing the most experienced developer to act as Coach, the best solution
is have Champion of the Court accept responsibility, or also practice Coach of the Week.

We believe the proposed solutions will be valuable to the community. In our
ongoing work, we are looking for more antipractices and their refactored solutions as to
make the adoption of agile methods easier in a wider variety of contexts.

References

Andrea, J. (2001). Managing the Bootstrap Story in an XP Project. InProceedings of XP
2001, North Carolina,.

Beck, K. and Andres, C. (2004).Extreme Programming Explained: Embrace Change,
2nd Edition. Addison-Wesley, 2 edition.

Brazilian Ministry of Culture (2003). Digital culture department. http:
//www.cultura.gov.br/foruns_de_cultura/cultura_digital/
index.html .

Brown, W.J., H. M. and Thomas, S. (2000).AntiPatterns in Project Management,. John
Wiley & Sons.

Coplien, J. and Harrison, N. (2004).Organizational Patterns of Agile Software Develop-
ment. Prentice-Hall, Inc. Upper Saddle River, NJ, USA.

Dubinsky, Y. and Hazzan, O. (2006). Using a role scheme to derive software project
metrics.Journal of Systems Architecture, 52:693–699.

Freire, A., Gatto, F., and Kon, F. (2005a). Cigarra-A Peer-to-Peer Cultural Grid. InAnais
do 6o Workshop sobre Software Livre (WSL 2005), pages 177–183.

Freire, A., Goldman, A., Ferreira, C. E., Asmussen, C., and Kon, F. (2004). Mico -
university schedule planner. InAnais do 5o Workshop sobre Software Livre (WSL
2004), pages 147–150, Porto Alegre.



Freire, A., Kon, F., and Torteli, C. (2005b). Xp south of the equator: An experience
implementing xp in brazil. InProceedings of the XP 2005 Conference, volume 3556
of Lecture Notes on Computer Science, pages 10–18. Springer.

Goldman, A., Kon, F., Silva, P. J. S., and Yoder, J. W. (2004). Being Extreme in the
Classroom: Experiences Teaching XP.Journal of the Brazilian Computer Society,
10(2):1–17.

Hedin, G., Bendix, L., and Magnusson, B. (2003). Coaching Coaches. InProceedings of
4th International Conference on Extreme Programming and Agile Processes in Soft-
ware Engineering (XP 2003), volume 2675, pages 154–160. Springer.

Jackson, A., e. a. (2004). Behind the Rules: XP Experiences. InProceedings of the 2004
Agile Development Conference, Salt Lake City.

Kuranuki, Y. and Hiranabe, K. (2004). AntiPractices: AntiPatterns for XP Practices. In
Proceedings of the 2004 Agile Development Conference, Salt Lake City.

Martin, A., R. B. and Noble, J. (2004). The XP Customer Role in Practice: Three Studies.
In Proceedings of the 2004 Agile Development Conference, Salt Lake City.

Meszaros, J. (2004). Using Storyotypes to Split Bloated XP Stories. InProceedings of
the XP/Agile Universe 2004, volume 3134, pages 73–80, North Carolina,. Springer.

Mugridge, R., MacDonald, B., Roop, P., and Tempero, E. (2003). Five Challenges in
Teaching XP. InProceedings of 4th International Conference on Extreme Program-
ming and Agile Processes in Software Engineering (XP 2003), volume 2675, pages
406–409. Springer.

Paggo (2003). Paggo.http://www.paggo.com.br .

Tomek, I. (2002). What i Learned Teaching XP. InProceedings of the 2002 OOPSLA
Educators Symposium, Seattle.


